NOTE

THE CIRCULAR FLOW NUMBER OF A 6-EDGE CONNECTED GRAPH IS LESS THAN FOUR

ANNA GALLUCCIO*, LUIS A. GODDYN[†]

Received March 29, 2000

We show that every 6-edge connected graph admits a circulation whose range lies in the interval [1,3).

The circular flow number $\phi_c(G)$ of a (finite) graph G is defined by

$$\phi_c(G) = \inf\{r \in \mathbb{R} :$$
 some orientation \vec{G} admits a circulation $f : E(\vec{G}) \to [1, r-1]\}.$

This parameter is a refinement of the well studied flow number $\phi(G) := \lceil \phi_c(G) \rceil$, which was introduced by Tutte as a dual to the chromatic number. Since $\phi_c(G) \ge 2$ with equality if and only if G is eulerian, the circular flow number may be regarded as a measure of how close a graph is to being eulerian. The following results and conjectures can be found in [5].

- **Theorem** (Seymour, 1981) Every 2-edge connected graph G has $\phi_c(G) \leq 6$.
- Conjecture (Tutte, 1954) Every 2-edge connected graph G has $\phi_c(G) \leq 5$.

Mathematics Subject Classification (2000): 05C70, 90B10, 90C35

^{*} Supported by NATO-CNR Fellowship; this work was done while the author was visiting the Dept. of Mathematics and Statistics at Simon Fraser University, Canada.

 $^{^{\}dagger}$ Supported by a National Sciences and Engineering Research Council Research Grant

- **Theorem** (Jaeger, 1975) Every 4-edge connected graph G has $\phi_c(G) \leq 4$.
- Conjecture (Tutte, 1966) Every 4-edge connected graph G has $\phi_c(G) \leq 3$.

This list suggests that the circular flow number might decrease as edge connectivity increases. For this and other reasons, the following has been asked [1].

Question 1. Is it true that $\sup\{\phi_c(G): G \text{ is } k\text{-edge connected}\} \to 2$ as $k \to \infty$?

The answer is "yes" for graphs of bounded genus [6], but little progress has been made for general graphs. In this note we present a refinement of Jaeger's result.

Theorem 2. Every 6-edge connected graph G has $\phi_c(G) < 4$.

It suits our purpose to use the following "Minty-like" formula for ϕ_c which arises directly from Hoffman's circulation condition ([3], or see [2]). If G = (V, E) is finite and 2-edge connected, then

(1)
$$\phi_c(G) = \min_{\vec{G}} \max_{\emptyset \neq X \subset V} \frac{|\delta X|}{|\delta^+ X|}$$

where \vec{G} ranges over the strong orientations of G. (Here $\delta^+ X$ denotes the set of arcs from X to V-X, and $\delta X = \delta^+ X \cup \delta^+ (V-X)$.)

Let $T \subseteq V(G)$. A T-join in G is a subset $J \subseteq E(G)$ such that T is the set of odd-degree vertices in the induced subgraph G[J]. An \emptyset -join is usually called a cycle or $even\ subgraph$ of G. We use two standard results regarding trees and T-joins. The first is folklore, and the second was first proved by Nash-Williams [4].

Lemma 3. Any tree H contains a T-join, for any $T \subseteq V(H)$ of even cardinality.

Lemma 4. Any 2k-edge connected graph contains k edge-disjoint spanning trees.

Lemma 5. Let H_1 and H_2 be edge-disjoint spanning trees of a graph G and let T be an even subset of V(G). Then $H_1 \cup H_2$ contains a T-join which is spanning and connected.

Proof. Let V_1 be the set of odd-degree vertices in H_1 . The symmetric difference $V_1\Delta T$ has even cardinality, so, by Lemma 3, H_2 contains a $(V_1\Delta T)$ -join J_2 . Let $F = H_1 \cup J_2$. Since H_1 and J_2 are edge disjoint, F is a T-join. Furthermore $E(H_1) \subseteq F$ so F spans G and is connected.

Lemma 6. Consider the polyhedron $P = \{x \in \mathbb{R}^8 : Ax = b, x \ge 0\}$ where

$$[A|b] = \begin{bmatrix} 1 & 1 & 1 & 0 & -1 & -1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 1 & -1 & 0 & 1 & -1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}.$$

Then the linear program $z^* = \min\{[1\ 1\ 1\ 1\ 0\ 0\ 0\ 0]x : x \in P\}$ has a unique optimum solution $x^* = \left[\frac{1}{4}00000\frac{1}{4}\frac{1}{2}\right]^T$ with value $z^* = \frac{1}{4}$.

Proof. It is routine to check that x^* is P-feasible and that the vector $y^* =$ $\left[\frac{1}{2},\frac{1}{4},\frac{1}{4}\right]$ is a feasible solution to the dual linear program $\max\{y[0\,0\,1]^T:yA\leq 1\}$ [11110000]}. Both objective values equal $\frac{1}{4}$ so (x^*, y^*) is an optimal dual pair. To show uniqueness we demonstrate that the primal objective vector is in the strict interior of a full dimensional cone generated by normals of active (tight) constraints at x^* . Writing $x = [x_1 x_2 \dots x_8]^T$, the active constraints are the three equations Ax = b and the five equations $x_i = 0$, i = 2, 3, 4, 5, 6. Indeed we have the positive linear combination

$$[1\ 1\ 1\ 1\ 0\ 0\ 0\ 0] = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ A + \frac{1}{4}e_2 + \frac{1}{2}e_3 + \frac{1}{2}e_4 + \frac{1}{2}e_5 + \frac{1}{4}e_6 \end{bmatrix}$$

where e_i is the *i*-th standard unit vector in \mathbb{R}^8 . The cone is full dimensional since the first, seventh and eighth columns of A are linearly independent. \blacksquare

Proof of Theorem 2. Let V_1 be the vertices of odd degree in G. By Lemma 4, G has three edge disjoint spanning trees. So by Lemmas 3 and 5, G has two edge-disjoint V_1 -joins, J_1 , J_2 , such that J_2 spans G and is connected. Let $\vec{C_1}$ and $\vec{C_2}$ be eulerian orientations of the complementary cycles $C_1 =$ $E-J_1$ and $C_2=E-J_2$. Note that $C_1\cup C_2=E(G)$. Let \vec{G} be the lexicographic orientation of G induced by $(\vec{C_1}, \vec{C_2})$. That is, we orient each edge $e \in E(G) \cap$ C_1 as it is oriented in $\vec{C_1}$, and we orient each $e \in E(G) - C_1$ as it is oriented in \vec{C}_2 .

Let X be a proper nonempty subset of $V(\vec{G})$. We shall show that $\frac{|\delta^+ X|}{|\delta X|} > \frac{1}{4}$ and the result follows from (1). We associate with every edge $e \in \delta X$ an ordered pair $\sigma \tau \in \{+, -, 0\}^2$ where

$$\sigma = \begin{cases} + & \text{if } \vec{C_1} \text{ traverses } e \text{ from } X \text{ to } V - X \\ - & \text{if } \vec{C_1} \text{ traverses } e \text{ from } V - X \text{ to } X \\ 0 & \text{if } e \notin C_1 \end{cases}$$

and where τ is defined similarly using C_2 in place of C_1 . The pair $\sigma\tau$ is called the *type* of e.

Let $x_{\sigma\tau}$ denote the proportion of edges in δX having type $\sigma\tau$. Since $C_1 \cup C_2 = E(G)$, no edge has type 00. We consider the 8-dimensional column vector

$$x = [x_{++} \ x_{+0} \ x_{+-} \ x_{0+} \ x_{--} \ x_{-0} \ x_{-+} \ x_{0-}]^T.$$

Since each \vec{C}_i traverses δX the same number of times in each direction, x is a feasible point in the polyhedron P of Lemma 6. Because \vec{G} is defined lexicographically, we have

$$\frac{|\delta^+ X|}{|\delta X|} = [1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0]x$$

so this ratio is bounded below by the optimum value of the linear program of Lemma 6. By that lemma, the unique optimum solution is $x^* = \left[\frac{1}{4}00000\frac{1}{4}\frac{1}{2}\right]^T$ with value $z^* = \frac{1}{4}$. Since J_2 is spanning and connected, we have $\delta X - C_2 \neq \emptyset$, so $x_{+0} + x_{-0} > 0$. Thus $x \neq x^*$ and $[11110000]x > \frac{1}{4}$ as claimed.

Remark. We have not proved that $\sup\{\phi_c(G): G \text{ is 6-edge connected}\} < 4$. To do so by the above method would require finding disjoint V_1 -joins J_1 , J_2 such that $|J_1 \cap \delta X| \ge c |\delta X|$ for all $X \subseteq V$ and some fixed c > 0. For k-edge connected graphs, the strongest lower bound implied directly by Lemmas 3 and 4 is $|J_1 \cap \delta X| \ge \lfloor \frac{k-4}{2} \rfloor$.

References

- [1] A. GALLUCCIO, L. A. GODDYN and P. HELL: High girth graphs avoiding a minor are nearly-bipartite, (2000). To appear on Jour. Comb. Theory B.
- [2] L. A. GODDYN, M. TARSI, and C.-Q. ZHANG: On (k,d)-colorings and fractional nowhere zero flows, J. Graph Theory, 28 (1998), 155–161.
- [3] A. J. Hoffman: Some recent applications of the theory of linear inequalities to extremal combinatorial analysis, in: Combinatorial Analysis: Proceedings of the Tenth Symposium in Applied Mathematics of the American Mathematical Society (R. Bellman and M. H. Jr., eds.), American Math. Soc., 1960, 113–128.

- [4] C. S. J. A. NASH-WILLIAMS: Edge-disjoint spanning trees of finite graphs, J. London Math. Soc., 36 (1961), 445–450.
- [5] P. D. SEYMOUR: Nowhere zero flows, in: Handbook of Combinatorics (R. Graham, M. Grötschel and L. Lovász, eds.), vol. 1, Elsevier, Amsterdam, 1995. Appendix to chapter 4.
- [6] C. Q. Zhang: Circular flows of nearly eulerian graphs and vertex-splitting, (1999), preprint.

Anna Galluccio

Istituto di Analisi dei Sistemi ed Informatica - CNR Viale Manzoni 30 00185 Roma, Italy galluccio@iasi.rm.cnr.it

Luis A. Goddyn

Department of Mathematics and Statistics Simon Fraser University 8888 University Drive Burnaby, BC V5A 1S6, Canada goddyn@math.sfu.ca